

- SERVIZIO EDILIZIA - Ufficio Vigilanza sulle Costruzioni

Rev 26082010

PARAMETRI MECCANICI MURATURE

(D.M. 14.01.2008 - §C8A.1.A.4)

LIVELLO di CONOSCENZA 1 (LC1)

a) ANALISI LINEARE (STATICA e/o DINAMICA)

$$f_d = f_{m,min} / FC \times \gamma_m$$

$$\tau_{\rm d}$$
 = $\tau_{\rm 0.min}$ / FC x $\gamma_{\rm m}$

$$E = (E_{min} + E_{max}) / 2$$

$$G = (G_{min} + G_{max}) / 2$$

Nota.

$$f_m$$
 - τ $_0$ - E - G

Vedere Tab. C8A.2.1

$$\gamma$$
 m = 2

b) ANALISI NON LINEARE (STATICA e/o DINAMICA)

$$f_d = f_{m,min} / FC \times \gamma_m$$

$$\tau_{\rm d}$$
 = $\tau_{\rm 0,min}$ / FC x $\gamma_{\rm m}$

$$E = (E_{min} + E_{max}) / 2$$

$$G = (G_{min} + G_{max}) / 2$$

Nota.

f
$$_{\rm m}$$
 - au $_{\rm 0}$ - E - G

Vedere Tab. C8A.2.1

 $\gamma_{\rm m}$ = 1

FC = 1.35

- SERVIZIO EDILIZIA - Ufficio Vigilanza sulle Costruzioni

Rev_26082010

LIVELLO di CONOSCENZA 2 (LC2)

a) ANALISI LINEARE (STATICA e/o DINAMICA)

Nota.

Minimo n°1 prova sperimentale – Martinetto piatto doppio Minimo n°1 prova sperimentale – Caratterizzazione malta

f
$$_{\rm m}$$
 - τ $_{\rm 0}$ - E - G

Vedere Tab. C8A.2.1

$$\gamma$$
 m = 2

FC = 1.2

f
$$_{\rm d}$$
 = (f $_{\rm m,max}$ + f $_{\rm m,min})$ / 2 x FC x γ $_{\rm m}$

$$\tau_{d} = (\tau_{0,min} + \tau_{0,max}) / 2 \times FC \times \gamma_{m}$$

$$E = (E_{min} + E_{max}) / 2$$

$$G = (G_{min} + G_{max}) / 2$$

b) ANALISI NON LINEARE (STATICA e/o DINAMICA)

Nota.

Minimo n°1 prova sperimentale – Martinetto piatto doppio Minimo n°1 prova sperimentale – Caratterizzazione malta

f
$$_{\rm m}$$
 - au $_{\rm 0}$ - E - G

Vedere Tab. C8A.2.1

$$\gamma_{\rm m} = 1$$

FC = 1.2

$$f_d = (f_{m,max} + f_{m,min}) / 2 \times FC \times \gamma_m$$

$$\tau_{d} = (\tau_{0,min} + \tau_{0,max}) / 2 \times FC \times \gamma_{m}$$

$$E = (E_{min} + E_{max}) / 2$$

$$G = (G_{min} + G_{max}) / 2$$

- SERVIZIO EDILIZIA -

Ufficio Vigilanza sulle Costruzioni

Rev 26082010

LIVELLO di CONOSCENZA 3 (LC3)

a) ANALISI LINEARE (STATICA e/o DINAMICA)

Nota.

Minimo n°1 prova sperimentale – Martinetto piatto doppio Minimo n°1 prova sperimentale – Caratterizzazione malta

Con n°1 prova sperimentale di compressione diagona le e/o combinate compressione e taglio (f 1 - τ 1)

$$f_m$$
 - au $_0$ - E - G

Vedere Tab. C8A.2.1

 $\gamma_{\rm m}$ = 2

FC = 1

Se
$$f_{m,min} \le f_1 \le f_{m,max}$$

oppure $f_1 \ge f_{m,max}$

$$f_d = (f_{m,max} + f_{m,min}) / 2 \times FC \times \gamma_m$$

$$\tau_{d} = (\tau_{0,min} + \tau_{0,max}) / 2 \times FC \times \gamma_{m}$$

$$E = (E_{min} + E_{max}) / 2$$

$$G = (G_{min} + G_{max}) / 2$$

Se
$$f_1 \le f_{m,min}$$

$$f_d = f_1 / FC \times \gamma_m$$

$$\tau_{\rm d}$$
 = $\tau_{\rm 1}$ / FC x $\gamma_{\rm m}$

$$E = (E_{min} + E_{max}) / 2$$

$$G = (G_{min} + G_{max}) / 2$$

b) ANALISI NON LINEARE (STATICA e/o DINAMICA)

Nota.

Minimo n°1 prova sperimentale – Martinetto piatto doppio

Minimo n°1 prova sperimentale – Caratterizzazione malta

Con n°1 prova sperimentale di compressione diagona le e/o combinate compressione e taglio (f 1 - 7 1)

$$f_m$$
 - τ $_0$ - E - G

$$\gamma_m = 1$$

Se
$$f_{m,min} \le f_1 \le f_{m,max}$$

oppure
$$f_1 \ge f_{m,max}$$

$$f_d = (f_{m,max} + f_{m,min}) / 2 \times FC \times \gamma_m$$

$$\tau_{d} = (\tau_{0,min} + \tau_{0,max}) / 2 \times FC \times \gamma_{m}$$

$$E = (E_{min} + E_{max}) / 2$$

$$G = (G_{min} + G_{max}) / 2$$

Se
$$f_1 \le f_{m,min}$$

$$f_d = f_1 / FC \times \gamma_m$$

$$\tau_d = \tau_1 / FC \times \gamma_m$$

$$E = (E_{min} + E_{max}) / 2$$

$$G = (G_{min} + G_{max}) / 2$$

- SERVIZIO EDILIZIA -

Ufficio Vigilanza sulle Costruzioni

Rev 26082010

c) ANALISI LINEARE (STATICA e/o DINAMICA)

Nota.

Minimo n°1 prova sperimentale – Martinetto piatto doppio Minimo n°1 prova sperimentale – Caratterizzazione malta

Con n°2 prove sperimentali di compressione diagona le e/o combinate compressione e taglio $(f_1, f_2 - \tau_1, \tau_2)$

f
$$_{\rm m}$$
 - τ $_{\rm 0}$ - E - G $$\rm Vedere~Tab.~C8A.2.1$ γ $_{\rm m}$ = 2 $$\rm FC$ = 1

Se
$$f_{m,min} \le f_1 + f_2 / 2 \le f_{m,max}$$
 $f_d = (f_{m,max} + f_{m,min}) / 2 \times FC \times \gamma_m$

$$E = (E_{min} + E_{max}) / 2$$

 $G = (G_{min} + G_{max}) / 2$

 $\tau_{d} = (\tau_{0,min} + \tau_{0,max})/2 \times FC \times \gamma_{m}$

Se
$$f_1 + f_2/2 \ge f_{m,max}$$
 $f_d = f_{m,max} / FC \times \gamma_m$

$$\tau$$
 $_{\rm d}$ = τ $_{\rm 0,max}$ / FC x γ $_{\rm m}$

$$E = (E_{min} + E_{max}) / 2$$

$$G = (G_{min} + G_{max}) / 2$$

Se
$$f_1 + f_2 / 2 \le f_{m,min}$$
 $f_d = (f_1 + f_2) / 2 \times FC \times \gamma_m$

$$\tau_d = (\tau_1 + \tau_2) / 2 \times FC \times \gamma_m$$

$$E = (E_{min} + E_{max}) / 2$$

 $G = (G_{min} + G_{max}) / 2$

d) ANALISI NON LINEARE (STATICA e/o DINAMICA)

Nota

Minimo n°1 prova sperimentale – Martinetto piatto doppio Minimo n°1 prova sperimentale – Caratterizzazione malta

Con n°2 prove sperimentali di compressione diagona le e/o combinate compressione e taglio $(f_1, f_2 - \tau_1, \tau_2)$

f _m -
$$\tau$$
 ₀ - E - G Vedere Tab. C8A.2.1
$$\gamma$$
 _m = 1

FC = 1
Se
$$f_{m,min} \le f_1 + f_2 / 2 \le f_{m,max}$$

$$f_{d} = (f_{m,max} + f_{m,min}) / 2 \times FC \times \gamma_{m}$$

$$\tau_{d} = (\tau_{0,min} + \tau_{0,max}) / 2 \times FC \times \gamma_{m}$$

$$E = (E_{min} + E_{max}) / 2$$

$$G = (G_{min} + G_{max}) / 2$$

- SERVIZIO EDILIZIA -

Ufficio Vigilanza sulle Costruzioni

Rev 26082010

Se
$$f_1 + f_2 / 2 \ge f_{m,max}$$

$$f_d = f_{m,max} / FC \times \gamma_m$$

$$\tau_{\rm d}$$
 = $\tau_{\rm 0,max}$ / FC x $\gamma_{\rm m}$

$$E = (E_{min} + E_{max}) / 2$$

$$G = (G_{min} + G_{max}) / 2$$

Se
$$f_1 + f_2 / 2 \le f_{m min}$$

$$f_d = (f_1 + f_2) / 2 \times FC \times \gamma_m$$

$$\tau$$
 $_{\rm d}$ = ($\tau_{\rm 1}$ + $\tau_{\rm 2})$ / 2 x FC x γ $_{\rm m}$

$$E = (E_{min} + E_{max}) / 2$$

$$G = (G_{min} + G_{max}) / 2$$

e) ANALISI LINEARE (STATICA e/o DINAMICA)

Nota.

Minimo n°1 prova sperimentale – Martinetto piatto doppio

Minimo n°1 prova sperimentale – Caratterizzazione malta

Con n°3 o più prove sperimentali di compressione diagonale e/o combinate compressione e taglio $(f_1, f_2, f_n - \tau_1, \tau_2, \tau_n)$

$$\gamma_{\rm m}$$
 = 2

FC = 1

$$f_d = (f_1 + f_2 + + f_n) / n \times FC \times \gamma_m$$

$$\tau_{d} = (\tau_{1} + \tau_{2} + \dots + \tau_{n}) / n \times FC \times \gamma_{m}$$

$$E_d = (E_1 + E_2 + + E_n) / n$$

$$G_d = (G_1 + G_2 + + G_n) / n$$

f) ANALISI NON LINEARE (STATICA e/o DINAMICA)

Nota.

Minimo n°1 prova sperimentale – Martinetto piatto doppio

Minimo n°1 prova sperimentale – Caratterizzazione malta

<u>Con n°3 o più prove sperimentali di compressione d iagonale e/o combinate compressione e taglio $(f_1, f_2, f_n, \tau_1, \tau_2, \tau_n)$ </u>

$$\gamma_{\rm m}$$
 = 1

FC = 1

$$f_d = (f_1 + f_2 + + f_n) / n \times FC \times \gamma_m$$

$$\tau_d = (\tau_1 + \tau_2 + \dots + \tau_n) / n \times FC \times \gamma_m$$

$$E_d = (E_1 + E_2 + + E_n) / n$$

$$G_d = (G_1 + G_2 + + G_n) / n$$