

- SERVIZIO EDILIZIA -Ufficio Vigilanza sulle Costruzioni

Rev_24112010

PROGETTAZIONE ELEMENTI STRUTTURALI SECONDARI

(D.M. 14.01.2008 - §7.2.3)

$F_a = (S_a \times W)$	/ _a) / q _a	Forza sismica orizzontale agente nel baricentro dell'eleme	nto non strutturale		
S_a		Accelerazione massima (adimensionalizzata rispetto a g)			
W a		Peso dell'elemento non strutturale			
q _a		Fattore di struttura dell'elemento non strutturale	(Tab. 7.2.I)		
$S_a = \alpha \times S$ [(3)	x (1 + Z	/ H)) / (1 + (1 - T_a / T_1) ²) - 0,5]	(§ 7.2.2)		
$\alpha = a_g (SLV,A) / g$					
a_g (SLV,A)	Accele	razione massima del terreno per stato limite ultimo e sottosuolo	tipo A		
g	Accele	razione di gravità			
$S = S_s \times S_t$			(§ 3.2.5)		
S_s	Coeffic	siente di amplificazione stratigrafica			
S_t	Coeffic	siente di amplificazione topografica			
Z	Altezza	a del baricentro dell'elemento non strutturale dal piano fondale			
Н	Altezza	a del fabbricato dal piano fondale			
T _a	Periodo	o fondamentale di vibrazione dell'elemento non strutturale (n=1)			
T_1	Periodo	o fondamentale di vibrazione della costruzione nella direzione co	onsiderata		
$T = (2 \times h^2) / (n^2 \times \pi) \times \sqrt{[A \times \infty]/[E \times A \times \alpha]}$					

·				
$T_a = (2 \times h^2) / (n^2 \times \pi) \times \sqrt{[A \times \gamma_m / (E \times J \times g)]}$				
h	Altezza dell'elemento non strutturale			
n	Numero modo di vibrare (n=1)			
A _a	Area di base dell'elemento non strutturale			
γ m	Peso per unità di volume dell' elemento non strutturale			
$E = 1000 x f_k$	Modulo elastico dell'elemento non strutturale			
f_k	Resistenza caratteristica a compressione dell'elemento non strutturale (Tab. 11.10.V)			
J	Momento di inerzia dell'elemento non strutturale rispetto all'asse baricentrico ortogonale alla Fa			
g	Accelerazione di gravità			

- SERVIZIO EDILIZIA - Ufficio Vigilanza sulle Costruzioni

Rev 24112010

NOTA. Per il calcolo di J e per il calcolo di W_a utilizzare lo spessore totale comprensivo delle parti non aventi funzione resistente (Intonaco, isolamento termico..).

Prima IPOTESI

(Trave Appoggiata con carico concentrato in mezzeria)

 $M_{Ed} = F_a \times h / 4$

Momento Sollecitante

F_a Forza sismica orizzontale agente sull' elemento non strutturale

h Altezza dell'elemento non strutturale

 $M_{Rd} = (L \times t^2 \times \sigma_0 / 2) \times [1 - (\sigma_0 / 0.85 \times f_d)]$

Momento Resistente

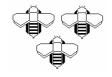
L Larghezza dell'elemento non strutturale nella direzione perpendicolare alla F_a

t Spessore della sezione resistente dell'elemento non strutturale nella direzione della Fa

 $\sigma_0 = N / (Lt)$ Tensione normale media di compressione riferita al peso totale W_a sulla sezione resistente

N Sforzo normale riferito al peso totale W_a dell'elemento non strutturale

A Sezione resistente dell'elemento non strutturale


 $f_d = f_k / \gamma_m$ Resistenza a compressione di calcolo della muratura

f_k Resistenza caratteristica a compressione dell'elemento non strutturale (Tab. 11.10.V)

 $\gamma_m = 2$ Coefficiente parziale di sicurezza della muratura (§ 7.8.1.1)

 $M_{Rd} / M_{Ed} \ge 1$

Verifica Soddisfatta

- SERVIZIO EDILIZIA - Ufficio Vigilanza sulle Costruzioni

Rev_24112010

Seconda IPOTESI

(Trave Appoggiata con carico distribuito)

$M_{Ed} = (F_a / h) \times h^2 / 8$

Momento Sollecitante

F_a Forza sismica orizzontale agente sull' elemento non strutturale

h Altezza dell'elemento non strutturale

$M_{Rd} = (L \times t^2 \times \sigma_0 / 2) \times [1 - (\sigma_0 / 0.85 \times f_d)]$

Momento Resistente

L Larghezza dell'elemento non strutturale nella direzione perpendicolare alla Fa

t Spessore della sezione resistente dell'elemento non strutturale nella direzione della Fa

 $\sigma_0 = N / (Lt)$ Tensione normale media di compressione riferita al peso totale W_a sulla sezione resistente

N Sforzo normale riferito al peso totale W_a dell'elemento non strutturale

A Sezione resistente dell'elemento non strutturale

 $f_d = f_k / \gamma_m$ Resistenza a compressione di calcolo della muratura

f_k Resistenza caratteristica a compressione dell'elemento non strutturale (Tab. 11.10.V)

 $\gamma_m = 2$ Coefficiente parziale di sicurezza della muratura (§ 7.8.1.1)

 $M_{Rd} / M_{Ed} \ge 1$

Verifica Soddisfatta

- SERVIZIO EDILIZIA - Ufficio Vigilanza sulle Costruzioni

Rev_24112010

Terza IPOTESI

(Cinematismo con formazione di cerniere plastiche in appoggio e mezzeria – Fig.1)

$M_{Ed} = (F_a \times h / 8) + (W_a \times t / 4)$

Momento Ribaltante

F_a Forza sismica orizzontale agente nel baricentro dell'elemento non strutturale

h Altezza dell'elemento non strutturale

t Spessore della sezione resistente dell'elemento non strutturale nella direzione della Fa

$M_{Rd} = W_a / 2 x [t - W_a / (4 x 0.85 x f_d x L)]$

Momento Stabilizzante

W a	Peso dell'elemento non strutturale
L	Larghezza dell'elemento non strutturale nella direzione perpendicolare alla Fa
t	Spessore della sezione resistente dell'elemento non strutturale nella direzione della F_a
$f_{\text{d}} = f_{\text{k}} / \gamma_{\text{m}}$	Resistenza a compressione di calcolo della muratura
f_k	Resistenza caratteristica a compressione dell'elemento non strutturale (Tab. 11.10.V)
$\gamma_m = 2$	Coefficiente parziale di sicurezza della muratura (§ 7.8.1.1)

$M_{Rd} / M_{Ed} \ge 1$

Verifica Soddisfatta

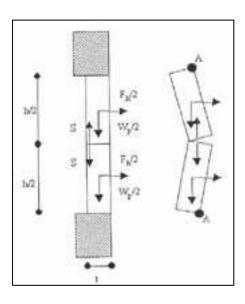


Fig.1